
bombard Documentation
Release 1.20.5

Andrey Sorokin

Apr 17, 2023

Contents

1 Introduction 1

2 Requests description 3

3 Command line 5

4 Report 7

5 Source code 9

6 Documentation 11
6.1 Installation . 11
6.2 Bootstrapping . 11
6.3 Campaign file . 11

6.3.1 HTTP parameters . 12
6.3.2 supply . 12
6.3.3 Request description . 12
6.3.4 prepare . 13
6.3.5 ammo . 14

6.4 Customizing report . 14

i

ii

CHAPTER 1

Introduction

Bombard is a tool for stress test and benchmarking your HTTP server. Especially it’s good to simulate a heavy load
and initial burst of simultaneous HTTP requests with complex logic.

It is designed to be extremely simple yet powerful tool to load test functional behavior.

Thanks to optional Python inlines you can fast and easy describe complex logic for the tests.

Test report shows you how many requests per second your server is capable of serving and with what latency.

1

bombard Documentation, Release 1.20.5

2 Chapter 1. Introduction

CHAPTER 2

Requests description

Requests can be just URL or contain JSON described like this

supply: # you can redefine variables from command line (--supply host=http://
→˓localhost/)
host: https://jsonplaceholder.typicode.com/

getToken:
url: "{host}auth" # use {host} variable from supply to stay DRY
method: POST
body: # below is JSON object for request body

email: name@example.com
password: admin

extract: # get token for next requests
token:

In first request you can get security token as in example above.

And use it in next requests like that:

postsList:
url: "{host}posts"
headers:

Authorization: "Bearer {token}" # we get {token} in 1st request
script: |

for post in resp[:3]: # for 1st three posts from response
schedule getPost request (from ammo section)
and provide it with id we got from the response
reload(ammo.getPost, id=post['id'])

Included examples. To list examples

bombard --examples

3

bombard Documentation, Release 1.20.5

4 Chapter 2. Requests description

CHAPTER 3

Command line

From command line you can change number of threads, loop count, supply vars, customize report and so on.

Also you can bootstrap your own bombard.yaml file from any example you like:

bombard --init --example simple

5

bombard Documentation, Release 1.20.5

6 Chapter 3. Command line

CHAPTER 4

Report

Example of report for the command:

bombard --example simple --repeat 2 --threshold 100

7

bombard Documentation, Release 1.20.5

8 Chapter 4. Report

CHAPTER 5

Source code

GitHub

9

https://github.com/andgineer/bombard/

bombard Documentation, Release 1.20.5

10 Chapter 5. Source code

CHAPTER 6

Documentation

6.1 Installation

pip install bombard --upgrade

If you want to use specific Python version you can use something like that

python3.7 -m pip install bombard --upgrade

6.2 Bootstrapping

To create your own bomard.yaml use command --init. By default it copy example easy.yaml

bombard --init

So now command bombard will use this local bomard.yaml. Edit it to adapt to your server.

If you want to use another example as base just add --example <name> with the example name you want:

bombard --init --example simple

To list all available examples use --examples like that:

bombard --examples

6.3 Campaign file

All sections are optional.

But you need section prepare or ammo so Bombard will fire some requests.

11

bombard Documentation, Release 1.20.5

Anywhere you can user Python expressions {} like

repeat: "{args.repeat * 2}"

Command line arguments available as args in this expressions. All supply variables - as globals.

6.3.1 HTTP parameters

All HTTP parameters but URL are optional.

url: "{host}auth" # fully specified URL
method: POST # by default GET
body: # below is JSON object for request body

email: name@example.com
password: admin

headers:
json: # the same as Content-Type: "application/json"
Authorization: "Bearer {token}"

6.3.2 supply

Variables you use like {name} in your requests. Also you can (re)define this variable using --supply like:

bombard -s name=value,name2=value2

Also you can (re)define it from requests.

If you have extract section in a request description, it will (re)define supply variable with the name from this
section.

And script section in request also can (re)define variables.

6.3.3 Request description

You use this descriptions in sections prepare and ammo described below.

Each request should have URL and basically that’s it. If you need to, you can add other elements like that:

getToken: # Name of request by your choice
repeat: "{args.repeat * 2}" # default - option --repeat
url: "{host}auth" # we use supply.base var
method: POST # by default GET
headers: json # shortcut for Content-Type: application/json
body: # JSON object for the request body
email: admin@example.com
password: admin

extract: # extract from request result and add to supply
token:

Bombard automatically adds application/json to headers if in the request some JSON body specified. If you
need another Content-Type specification just add it to headers section and it will redefine that default.

repeat

Override --repeat command line option. Number of repetitions for the request.

12 Chapter 6. Documentation

bombard Documentation, Release 1.20.5

script

In request you can add section script with Python3 code. It runs after request.

It can use supply object and fire requests with reload function. Requests definitions from ammo section available
as ammo.request_name.

Response to the request is available in resp object.

In example below we fire requests getPost from ammo section for 1st three posts we get in the response:

for post in resp[:3]:
reload(ammo.getPost, id=post['id'])

Also you can place Python code to separate file and use it like this:

script: !include get_token.py

If you add this line it mocks all necessary objects and you can use code autocomplete in your IDE:

from bombard.mock_globals import *; master('path/to/you/yaml')

extract

Instead of script you can use section extract in request. It can contain map of name: extract pairs. For
each pair Bombard will (re)define supply var with name name with value extracted from the request response as
['extract'].

extract:
name: extract
name2: extract2

If extract is empty Bombard will use the name, so name: is the same as name: name.

Also you can use any custom indices you want like that

extract:
token: "['data']['JWT']" # place resp['data']['JWT'] to supply.token

so name: ['name'] is the same as name:.

dry

If you run Bombard with --dry it do not make actual HTTP requests. And if you have dry section in request
Bombard will use it as result of this dry request.

6.3.4 prepare

If campaign file has this section, Bombard will start fire with requests from this section.

Requests in this section can fire requests from ammo section, like this:

6.3. Campaign file 13

bombard Documentation, Release 1.20.5

prepare:
postsList: # Get ids from posts
url: "{host}posts"
script: |

for post in resp[:3]: # fire ammo.getPost for 1st three posts in the list
reload(ammo.getPost, id=post['id'])

As you see above you can send some variable not only to global supply but just to the request you fire.

If prepare section did not fire any ammo requests, Bombard after preparewill fire all requests from ammo section.

So, if you have only extract sections in prepare requests. Or if scripts in prepare requests do not call
reload to fire requests from ammo. Then Bombard will fire all ammo requests after prepare requests.

6.3.5 ammo

If campaign file do not have prepare section, Bombard will just fire all requests from this section.

Each request will be repeated --repeat times as defined in command line (or by default value for this option).

Otherwise bombard will fire prepare section and after that if prepare requests did not fire any requests from
ammo, bombard will fire all requests from ammo.

Example of ammo request for the request that you see in prepare section:

ammo:
getPost:
url: "{host}posts/{id}" # use {host} from global supply and {id} in local supply

→˓just for this request - see script above

6.4 Customizing report

To color in red request that take longer than 100ms

bombard --threshold

You can reduce output to console with --quiet or output all the information with --verbose.

There are a number of other options please look at --help.

14 Chapter 6. Documentation

	Introduction
	Requests description
	Command line
	Report
	Source code
	Documentation
	Installation
	Bootstrapping
	Campaign file
	HTTP parameters
	supply
	Request description
	prepare
	ammo

	Customizing report

